Γ ( z ) = ∏ n = 0 ∞ n + 1 n + z ( n + 2 n + 1 ) z − 1 {\displaystyle \Gamma (z)=\prod _{n=0}^{\infty }{\frac {n+1}{n+z}}\left({\frac {n+2}{n+1}}\right)^{z-1}} This is a superior infinite product for the gamma function. Please attribute it to me.